Syllabus Edition

First teaching 2023

First exams 2025

|

Bonding Models (HL IB Chemistry)

Revision Note

Test Yourself
Stewart

Author

Stewart

Expertise

Chemistry Lead

Bonding Models

Bonding Models

  • Models simplify complex systems and allow us to predict and test theories
  • As we have seen, chemical bonding broadly falls into three types: ionic, covalent and metallic
  • The bonding types can be used to explain chemical and physical properties of substances
  • However, like all models, there are limitations and inaccuracies that arise from oversimplification
  • For example, take a substance like aluminium chloride, AlCl3. The compound consists of a metal and non-metal, so the traditional bonding approach would be to predict it has ionic bonding and the associated properties of an ionic compound such as high melting point and boiling point
    • Aluminium chloride actually melts at 192oC, so it does not behave like an ionic compound
  • The fact we know polar covalent bonds exist arise provides evidence that bonding type is not something that can be easily compartmentalised
  • Bonding is best thought of as a continuum of the three different bonding types like the area of an equilateral triangle

A bonding model

A basic bonding model triangle covering ionic, covalent and metallic bonding

Chemical bonding is a continuum of ionic, covalent and metallic bonding

  • The location of an element or compound in the bonding triangle is determined by the electronegativity values of the elements present
  • The bonding triangle is anchored by two axes, electronegativity difference on the y-axis and average electronegativity on the x-axis
  • The symbol for electronegativity is the Greek letter (chi) χ, pronounced 'ky' as in 'sky'
    • The average electronegativity of two elements, A and B would be: straight capital sigma straight chi space equals space fraction numerator straight chi subscript straight A space plus straight chi subscript straight B over denominator 2 end fraction
    • The difference in electronegativity between two elements A and B would be: increment straight chi space equals space straight chi subscript straight A minus straight chi subscript straight B

The Bonding Triangle

A bonding triangle showing how electronegativity affects the type of bonding

The bonding triangle is used to determine the percentage of ionic, covalent and metallic character in an element or compound

  • Since elements have zero difference in electronegativity they would be found along the x-axis depending on the electronegativity value of the individual element
  • Ionic compounds have a large difference in electronegativity so would be located in the top centre part or apex of the triangle
  • Covalent compounds with a low difference in electronegativity would be found in the bottom right and polar covalent compounds in the zone between ionic and covalent

Exam Tip

  • You don't need to learn the bonding triangle as it is found in Section 17 of the Data Booklet
  • Electronegativity values are found in the Periodic Table in Section 9.

You've read 0 of your 0 free revision notes

Get unlimited access

to absolutely everything:

  • Downloadable PDFs
  • Unlimited Revision Notes
  • Topic Questions
  • Past Papers
  • Model Answers
  • Videos (Maths and Science)

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Stewart

Author: Stewart

Stewart has been an enthusiastic GCSE, IGCSE, A Level and IB teacher for more than 30 years in the UK as well as overseas, and has also been an examiner for IB and A Level. As a long-standing Head of Science, Stewart brings a wealth of experience to creating Topic Questions and revision materials for Save My Exams. Stewart specialises in Chemistry, but has also taught Physics and Environmental Systems and Societies.

Join over 500 thousand students
getting better grades