Aldehydes & Ketones (AQA A Level Chemistry)

Revision Note

Test Yourself
Stewart

Author

Stewart

Expertise

Chemistry Lead

Oxidation of Aldehydes

  • Aldehydes and ketones contain the carbonyl functional group, C=O
  • This is why aldehydes and ketones are also known as carbonyls
  • The difference between aldehydes and ketones is the groups bonded to the carbon of the carbonyl group

Aldehydes & Ketones, downloadable AS & A Level Chemistry revision notes

  • The carbonyl group in an aldehyde is always situated at the end of the chain
    • When naming aldehydes, you do not include the '1' in the name, the carbonyl carbon is always number 1 on the chain
    • The simplest aldehyde is methanal, HCHO, with the only carbon being that of the carbonyl group

  • The carbonyl group in a ketone is always located within the chain
    • The simplest ketone is propan-2-one, CH3COCH3, as you need an alkyl group either side of the carbonyl carbon in a ketone

Preparation of Aldehydes & Ketones

  • Aldehydes and ketones can be prepared by oxidising primary and secondary alcohols as shown below

Oxidation of primary and secondary alcohols to prepare aldehydes & ketones, downloadable AS & A Level Chemistry revision notes

Further Oxidation

  • During the oxidation of a primary alcohol to an aldehyde, the apparatus must be set up to distill off the aldehyde as it is produced
  • Further oxidation of primary alcohols can then take place
    • Aldehydes can be easily oxidised to form carboxylic acids

  • To oxidise a primary alcohol straight to a carboxylic acid, you would heat the reaction mixture under reflux
    • The aldehyde would still be produced, but as it evaporates it would condense and drop back into the reaction mixture, to be further oxidised to the carboxylic acid

  • The oxidising agent used for all of the oxidation reactions be acidified potassium dichromate
    • K2Cr2O7 with sulfuric acid, H2SO4

  • Ketones are very resistant to being oxidised, so no further oxidation reaction will take place with secondary alcohols
    • This is because ketones do not have a readily available hydrogen atom, in the same way that aldehydes (or alcohols) do
    • An extremely strong oxidising agent would be needed for oxidation of a ketone to take place
    • The oxidation will likely oxidise a ketone in a destructive way, breaking a C-C bond

Oxidation of Aldehydes, downloadable AS & A Level Chemistry revision notes

Exam Tip

In the exam you can simply say that ketones cannot be oxidised!

Distinguishing Between Aldehydes & Ketones

Distinguishing Between Aldehydes & Ketones

  • Weak oxidising agents can be used to distinguish between an aldehyde and a ketone
    • The aldehyde will be oxidised to a carboxylic acid, but the ketone will not undergo oxidation

  • There are a number of tests that can be used to distinguish between aldehydes and ketones
  • You specifically need to know the following methods to distinguish between an aldehyde and a ketone:
    • Tollens' reagent (this is the most commonly used method)
    • Fehling's solution

Using Tollens' Reagent - The Silver Mirror Test

  • Tollens' reagent contains the silver(I) complex ion [Ag(NH3)2]+
  • This is formed when aqueous ammonia is added to a solution of silver nitrate
    • Tollens' reagent is also known as ammoniacal silver nitrate

  • If gently warmed with Tollens' reagent, an aldehyde will become oxidised
  • The silver(I) complex ion solution, [Ag(NH3)2]+, is colourless
  • As the aldehyde is oxidised, it causes the [Ag(NH3)2]+ ions to become reduced to solid metallic silver, Ag
  • This is why a positive test result is called a "silver mirror"

Positive Test Result:
  • When Tollens' reagent is gently warmed with an aldehyde, the silver mirror is formed
    • This is the positive test result

  • When Tollens' reagent is gently warmed with a ketone, no silver mirror will be seen, as the ketone cannot be oxidised by Tollens' reagent, so no reaction takes place
    • This is a negative test result

3-5-4-tollens-reagent-new

The Ag+ ions in Tollens’ reagent are oxidising agents, oxidising the aldehyde to a carboxylic acid and getting reduced themselves to silver atoms

Using Fehling's Solution 

  • Fehling’s solution is an alkaline solution containing copper(II) ions which act as the oxidising agent
  • If an aldehyde is warmed with Fehling's solution, the aldehyde will be oxidised and a colour change will take place
  • Fehling's solution is blue, because of the copper(II) complex ions present
  • During the reaction, as the aldehyde is oxidised to a carboxylic acid, the blue Cu2+ ions are reduced to Cu+ ions and a brick red precipitate is formed
  • The brick red precipitate is copper(I) oxide
  • If a ketone is warmed with Fehling's solution, no reaction takes place as the ketone will not be oxidised, so the solution will remain blue

Carbonyl Compounds Fehlings Solution, downloadable AS & A Level Chemistry revision notes

The copper(II) ions in Fehling’s solution are oxidising agents, oxidising the aldehyde to a carboxylic acid and getting reduced themselves to copper(I) ions in the Cu2O precipitate

  • Heating with acidified potassium dichromate could also be used to distinguish between an aldehyde and a ketone
    • The aldehyde would be oxidised, and you would see an orange to green colour change
    • The ketone would not be oxidised, so you would see no colour change

Summary of the Oxidation Reactions Table

Summary of oxidation reactions of alcohols and carbonyls, downloadable AS & A Level Chemistry revision notes

Exam Tip

You are expected to know all of the above methods which can be used to distinguish between an aldehyde and a ketone! However, Tollens' reagent is the most commonly used method, if trying to identify an unknown sample for example.

You've read 0 of your 0 free revision notes

Get unlimited access

to absolutely everything:

  • Downloadable PDFs
  • Unlimited Revision Notes
  • Topic Questions
  • Past Papers
  • Model Answers
  • Videos (Maths and Science)

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Stewart

Author: Stewart

Stewart has been an enthusiastic GCSE, IGCSE, A Level and IB teacher for more than 30 years in the UK as well as overseas, and has also been an examiner for IB and A Level. As a long-standing Head of Science, Stewart brings a wealth of experience to creating Topic Questions and revision materials for Save My Exams. Stewart specialises in Chemistry, but has also taught Physics and Environmental Systems and Societies.

Join over 500 thousand students
getting better grades